Домой Нумерология Федеральное государственное образовательное учреждения высшего профессионального образования «Московский государственный университет имени М.В. Ломоносова. Практическая польза от паутины Паутинная нить

Федеральное государственное образовательное учреждения высшего профессионального образования «Московский государственный университет имени М.В. Ломоносова. Практическая польза от паутины Паутинная нить

Шелк, образующий радиальные нити паутины, состоит из двух белков, определяющих его прочность и эластичность. Каждый белок содержит три участка с разными свойствами. Первый формирует аморфную (некристаллическую), способную к растяжению матрицу, которая придает шелку эластичность. Когда насекомое попадает в паутину, матрица растягивается, поглощая кинетическую энергию соударения с насекомым. Жесткость шелку придают два вида кристаллических областей, встроенных в аморфные участки каждого из белков. Обе эти области имеют плотноупакованную структуру и не поддаются растяжению, причем один из них имеет жесткую конструкцию. Полагают, что кристаллические участки с менее жесткой конструкцией скрепляют жесткие кристаллические структуры с аморфной матрицей.
 Толщина нити паутины составляет всего лишь 0,1 диаметра человеческого волоса, однако в несколько раз прочнее стальной проволоки того же веса. В фильме «Человек-паук» прочность паутины сильно недооценена.
 Объяснение дает биолог Вильям Пёрвз (William K. Purves) из Колледжа Харви Мадд


 Брюшко паука увеличенное в 12 т раз. Фабрика по производсту паутины.



Из подвижных трубок выприскивается белок, который, попав в воздух твердеет, образуя высокопрочную нить.



На рисунке слева кевлар, а справа нанотрубка − карбоновая нить. Тесты показывают более чем трехкратное провосходство в прочности. И это только начало.

Поперечный разрез нити, проволоки, даже паутины, как бы мал он ни был, все же имеет определенную геометрическую форму, чаще всего форму окружности. При этом диаметр поперечного сечения или, будем говорить, толщина одной паутины примерно 5 микронов (5 }

Мм. Есть ли что-нибудь тоньше паутины? Кто

U000 ) У У

самая искусная «тонкопряха»? Паук или, может быть, шелковичный червь? Нет. Диаметр нити натурального шелка 18 микронов, т.е. нить в 3"/ 2 раза толще одной паутины.

Люди издавна мечтали о том, чтобы своим мастерством превзойти искусство паука и шелковичного червя. Известна старинная легенда об изумительной ткачихе, гречанке Арахнее. Она в таком совершенстве овладела ткацким ремеслом, что се ткани были тонки, как паутина, прозрачны, как стекло, и легки, как воздух. С ней не могла соперничать паже сама Афина - богиня мудрости и покровительница ремесел.

Рис. 162.

Эта легенда, как и многие другие древние легенды и фантазии, в наше время стала былью. Современной Арахнеей, самой искусной «тонкопряхой», оказались инженеры-химики, создавшие из обыкновенной древесины необычайно тонкое и удивительно прочное искусственное волокно. Шелковые нити, полученные, например, медноаммиачным промышленным способом, в 2‘/г раза тоньше паутины, а в прочности почти нс уступают нитям натурального шелка. Натуральный шелк выдерживает нагрузку до 30 кг на 1 кв. мм поперечного сечения, а медноаммиачный - до 25 кг на 1 кв. мм.

Любопытен способ изготовления медноаммиачного шелка. Древесину превращают в целлюлозу, а целлюлозу растворяют в аммиачном растворе меди. Струйки раствора через тонкие отверстия выливают в воду, вода отнимает растворитель, после чего образующиеся нити наматывают на соответствующие приспособления. Толщина нити медноаммиачного шелка 2 микрона. На 1 микрон толще ее так называемый ацетатный, тоже искусственный, шелк. Поразительно то, что некоторые сорта ацетатного шелка крепче стальной проволоки! Если стальная проволока выдерживает нагрузку в 110 кг на один квадратный миллиметр поперечного сечения, то нить ацетатного шелка выдерживает 126 кг на 1 кв. мм.


Рис. 163.

Всем нам хорошо известный вискозный шелк имеет толщину нити около 4 микронов, а предельную прочность от 20 до 62 кг на 1 кв. мм поперечного сечения. На рис. 162 приведена сравнительная толщина паутины, человеческого волоса, различных искусственных волокон, а также волокон шерсти и хлопка, а на рис. 163 - их крепость в килограммах на 1 кв. мм. Искусственное, или, как его еще называют, синтетическое, волокно- одно из крупнейших современных технических открытий и имеет огромное хозяйственное значение. Вот что рассказывает инженер Буянов: «Хлопок растет медленно, и количсство его зависит от климата и урожая. Производитель натурального шелка - шелковичный червь - чрезвычайно ограничен в своих возможностях. За свою жизнь он выпрядет кокон, в котором имеется лишь 0,5 г шелковой нити...

Количество искусственного шелка, полученного путем химической переработки из 1 куб. м древесины, заменяет 320 000 шелковых коконов или годовой настриг шерсти с 30 овец, или средний урожай хлопка с ’/г га. Этого количества волокон достаточно для выработки четырех тысяч пар женских чулок или 1500 м шелковой ткани».

Пауки принадлежат к древнейшим обитателям Земли: следы первых паукообразных найдены в породах, которым 340–450 млн лет. Пауки примерно на 200–300 млн лет старше динозавров и более чем на 400 млн лет – первых млекопитающих. У природы было достаточно времени, чтобы не только умножить число паучьих видов (их известно около 60 тыс.), но и вооружить многих этих восьминогих хищников удивительным средством охоты – паутиной. Рисунок паутины может быть различным не только у разных видов, но и у одного паука в присутствии тех или иных химических веществ, например взрывчатых или наркотических. Пауков даже собирались запустить в космос для исследования влияния микрогравитации на рисунок паутины. Однако больше всего загадок таило вещество, из которого состоит паутина.

Паутина, как наши волосы, шерсть животных, нити шелковичных червей, состоит в основном из белков. Но полипептидные цепи в каждой паутинной нити переплетены столь необычным образом, что обрели почти рекордную прочность. Одиночная нить, производимая пауком, столь же прочна, как стальная проволока равного диаметра. Канат, сплетенный из паутины, толщиной всего примерно с карандаш, мог бы удержать на месте бульдозер, танк и даже такой мощный аэробус, как «Боинг-747». Но плотность стали в шесть раз больше, чем паутины.

Известно, сколь высока прочность шелковых нитей. Классическим примером служит наблюдение, сделанное аризонским врачом еще в 1881 г. На глазах этого врача произошла перестрелка, в которой один из стрелявших был убит. Две пули попали в грудь и прошли навылет. При этом с обратной стороны каждой раны торчали кусочки шелкового носового платка. Пули прошли сквозь одежду, мышцы и кости, но не смогли разорвать попавшегося им на пути шелка.

Почему же в технике применяют стальные конструкции, а не более легкие и эластичные – из материала, подобного паутине? Почему шелковые парашюты не заменяют этим же материалом? Ответ прост: попробуйте-ка сделать такой материал, какой ежедневно легко производят пауки, – не получится!

Ученые разных стран мира долго изучали химический состав паутины восьминогих ткачей, и сегодня картина ее строения раскрыта более или менее полно. Нить паутины имеет внутреннее ядро из белка, называемого фиброином, и окружающие это ядро концентрические слои гликопротеидных нановолокон. Фиброин составляет примерно 2/3 массы паутины (а также, кстати, и натурального шелкового волокна). Это вязкая, сиропообразная жидкость, полимеризующаяся и затвердевающая на воздухе.

Гликопротеидные волоконца, диаметр которых может составлять всего несколько нанометров, могут располагаться параллельно оси фиброиновой нити или образовывать спирали вокруг нити. Гликопротеиды – сложные белки, которые содержат углеводы и имеют молекулярную массу от 15 000 до 1 000 000 а.е.м, – присутствуют не только у пауков, но и во всех тканях животных, растений и в микроорганизмах (некоторые белки плазмы крови, мышечных тканей, оболочек клеток и др.).

При образовании паутины гликопротеидные волоконца соединяются между собой за счет водородных связей, а также связей между СО- и NН-группами, причем значительная доля связей образуется в паутинных железах паукообразных. Молекулы гликопротеидов могут образовывать жидкие кристаллы со стержневидными фрагментами, которые укладываются параллельно друг другу, что придает структуре прочность твердого тела при сохранении способности течь подобно жидкости.

Основные составные части паутины - простейшие аминокислоты: глицин Н 2 NCН 2 СООН и аланин СН 3 СHNН 2 CООН. В паутине содержатся и неорганические вещества – гидрофосфат калия и нитрат калия. Их функции сводятся к защите паутины от грибков и бактерий и, вероятно, созданию условий для образования самой нити в железах.

Отличительная особенность паутины - экологичность. Она состоит из легко усваиваемых природной средой веществ и не вредит этой среде. В этом отношении паутина пока не имеет аналогов, созданных руками человека.

Паук может выделять до семи разных по строению и свойствам нитей: одни – для ловчих «сетей», другие – для собственного перемещения, третьи – для сигнализации и т. д. Почти все эти нити могли бы найти широкое применение в промышленности и быту, если бы удалось наладить их широкое производство. Однако «приручить» пауков, как тутовых шелкопрядов, организовать своеобразные паучьи фермы вряд ли возможно: агрессивные привычки пауков и черты единоличника в их характере вряд ли позволят это сделать. А для производства всего 1 м ткани из паутины требуется «работа» более 400 пауков.

Можно ли воспроизвести химические процессы, проходящие в теле пауков, и скопировать природный материал? Ученые и инженеры уже довольно давно разработали технологию кевлара – арамидного волокна:

получаемого в промышленных масштабах и приближающегося по свойствам к паутине. Волокна из кевлара в пять раз слабее паутины, но все же настолько прочны, что их используют для изготовления легких пуленепробиваемых жилетов, защитных шлемов, перчаток, канатов и др. Но кевлар получают в среде горячих растворов серной кислоты, в то время как пауку требуется обычная температура. Химики пока не знают, как приблизиться к таким условиям.

Однако к решению материаловедческой проблемы приблизились биохимики. Сначала были выявлены и расшифрованы паучьи гены, программирующие образование нитей того или иного строения. Сегодня это касается пауков 14 видов. Затем американские специалисты из нескольких исследовательских центров (каждая группа самостоятельно) ввели эти гены бактериям, пытаясь получить нужные белки в растворе.

Ученые канадской биотехнологической фирмы «Нексиа» ввели такие гены мышам, затем перешли на коз, и козы стали давать молоко с тем самым белком, который образует нить паутины. Летом 1999 г. двух африканских карликовых козлов, Петера и Уэбстера, генетически запрограммировали давать потомство коз, молоко которых содержало такой белок. Эта порода хороша тем, что потомство становится взрослым уже в трехмесячном возрасте. Фирма пока хранит молчание, как делать нити из молока, но уже зарегистрировала название созданного ею нового материала – «BioSteel» («биосталь»). Статья о свойствах «биостали» опубликована в журнале «Science» («Наука», 2002, т. 295, с. 427).

Другим путем пошли немецкие специалисты из Гатерслебена: они ввели гены, подобные паучьим, в растения – картофель и табак. Им удалось получить в картофельных клубнях и табачных листьях до 2% растворимых белков, состоящих в основном из спидроина (главного фиброина пауков). Предполагается, что, когда количества производимого спидроина станут значительными, из него в первую очередь будут делать медицинские бинты.

Молоко, полученное от генетически измененных коз, вряд ли можно отличить по вкусу от натурального. Генетически модифицированный картофель похож на обычный: его в принципе тоже можно варить и жарить.

В разных странах биотехнологические компании научились изготавливать искусственные аналоги паутины, но до совершенства природного полимера им еще далеко. Достичь его можно только разобравшись, какие из физических или химических особенностей строения отвечают за уникальные механические свойства паутины, и успех в решении прикладной задачи напрямую зависит от результатов фундаментальных исследований.

С 2007 г. к этой работе подключилась группа исследователей кафедры биоинженерии биологического факультета МГУ им. М.В. Ломоносова под руководством доктора физико-математических наук, профессора К.В.Шайтана , и результаты их исследований приоткрыли завесу над некоторыми тайнами этого природного полимера.

Но, при чём здесь биотехнология ? Может быть, паутину можно получать естественным путем, подобно шелку? Ведь объемы производства шелковых нитей из коконов, сплетенных гусеницами тутового шелкопряда, весьма значительны. Такие попытки действительно предпринимали, были даже изобретены разные приборы для «доения» паука и аккуратного наматывания нежных нитей на медленно вращаемую катушку (Дебабов, Богуш, 1999; Work and Emerson, 1982).

Препятствий оказалось несколько. Во-первых, неуживчивость паучьей натуры: при совместном содержании эти животные враждуют и поедают друг друга . Во-вторых, каждый паук производит очень мало паутины: подсчитано, что для производства 500 г волокна потребуется 27 тыс. пауков среднего размера. Понятно, что продуктивность членистоногих вряд ли сможет удовлетворить промышленным запросам. Выход один: научиться получать ее искусственно.

90-е годы минувшего века и начало нынешнего ознаменовались нарастающим потоком исследований свойств и структуры паутины. Особенно большой интерес проявили в Великобритании, Германии, США и Японии. Было выяснено, что паутина имеет белковую природу, сходную с шелком. У пауков есть несколько типов паутинных желез и разные варианты паутины:

  • одна — для строительства коконов, куда самки откладывают яйца,
  • другая — для парашютирования, если приходится спасаться бегством,
  • клейкая — для строительства ловчей части паутины,
  • каркасная — на которую она накладывается.

Самая прочная паутина — каркасная , и она изучена лучше других. В ней преобладают два белка, получившие название спидроинов (от английского spider — паук). Они очень длинные — в состав каждого входит 2.5-3 тыс. аминокислотных остатков.

Один из белков каркасной паутины паука-кругопряда Nephila clavipes , широко распространенного на юге США, с ловчей сетью до метра в диаметре, получил название спидроин-1 , другой — спидроин-2 . Первый немного короче второго: молекулярный вес спидроина-1 — 275 тыс. атомных единиц массы, спидроина-2 — 320.

У разных видов пауков эти белки несколько отличаются как размером — от 180 до 720 тыс. а.е.м., так и последовательностью аминокислот, но у всех есть общая особенность — повторение одинаковых или почти одинаковых аминокислотных последовательностей, включающих участок из нескольких подряд остатков аланина (обычно их от четырех до девяти) и участок с частым повторением остатков глицина.

Физико-химические свойства белков определяются особенностями аминокислотных последовательностей, и спидроины — не исключение. Уникальное свойство спидроинов — чередование отрезков, богатых глицином и аланином. Оно-то и определяет, как молекула свернута в пространстве, как несколько молекул складываются в волокно-фибриллу и упорядоченную упаковку таких фибрилл в нанофибриллах паутинного волокна, а, кроме того, на концах молекул есть особые группы из нескольких десятков аминокислот с гидрофильными свойствами.

Благодаря значительным силам, брошенным на изучение всех этих уровней пространственной организации белков паутины, многое стало понятным, хотя полной ясности пока нет.

Первый, главный вопрос: за счет чего достигаются замечательные механические свойства паутины ?

Исследования с применением рентгеноструктурного анализа (Warwicker, 1960; Glisovic and Salditt, 2007) показали, что в секрете паутинной железы нити нескольких белковых молекул образуют множество плотных упаковок размером 2×5×7 нм. Полагают, что это — вплотную сближенные аланиновые участки. Такие структуры называют β-слоями. Многие исследователи паучьего шелка полагают, что своей прочностью паутина обязана именно им, а фрагменты, богатые глицином, свертываются в спирали и обеспечивают эластичность (Simmons et al., 1994; Parkhe et al., 1997, van Beek et. al, 2002 и др.).

Чтобы еще лучше понять процессы, происходящие на молекулярном уровне, биологи из Московского университета обратились к компьютерному моделированию . Оно позволяет в численном эксперименте на основе данных о строении молекул и об энергии межатомных взаимодействий определять такие свойства молекул, как растяжимость и пределы прочности на разрыв, наблюдать, как молекулы взаимодействуют между собой — в натурном эксперименте это крайне сложно, если вообще достижимо. Численные эксперименты проводились с использованием суперкомпьютерных технологий.

« На примере пептидов паутинного волокна нам удалось показать, что стабильность вторичной структуры зависит не только от аминокислотной последовательности, но и от молекулярного окружения, — утверждает автор исследования И.Оршанский . — Комплексы из нескольких пептидов обладают более устойчивой вторичной структурой как в случае полиаланиновых пептидов, так и в случае межаланиновых пептидов».

И все же остается загадкой: что заставляет жидкий секрет превращаться в чудесную прочную нить — твердую и нерастворимую ?

Если бы это удалось узнать во всех подробностях, появился бы ключ к воспроизведению этого процесса, а значит — к искусственному получению нити с такими же качествами. К тому же у паука это получается стремительно, а значит, можно достигнуть высокой производительности.

Теперь уже известно (Scheibel et al., 2009), что в процессе «созревания» паутины перед выходом из паучьей железы раствор спидроинов претерпевает множество изменений: ткани паука извлекают из него воду, из-за чего концентрация белков повышается, из окружающего их раствора извлекаются ионы натрия и хлора, зато возрастает содержание калия, фосфат-ионов и водорода, при этом реакция среды понижается от 6.9 до 6.3 и становится несколько более кислой.

В результате всех этих и других, неучтенных пока, процессов белок быстро меняет конфигурацию. И, что самое замечательное, это происходит при обычной температуре и давлении и без применения ядовитых реагентов, какие, к примеру, приходится применять при производстве других синтетических полимеров, в частности, кевлара, и без токсичных отходов. Известно также, что натяжение выделяемой нити влияет на ее прочность: если свежую нить растягивать с силой, то паутина получается тоньше и прочнее.

На сегодняшний день в получении искусственной паутины достигнуты некоторые успехи. Вначале 90-х гг. американские исследователи клонировали в клетках Escherichia coli гены спидроинов, составляющих нить основы паука Nephila clavipes. Появилась возможность, используя генно-инженерные методики, встраивать фрагменты генов спидроинов в геномы других организмов и выделять из них белок, синтезированный in vivo .

Для подобных целей часто используют все ту же бактерию Echerichia coli, но для спидроинов такая технология не подходит: для бактерий их молекулы слишком велики, поэтому биотехнологи обратили свои взоры к более крупным организмам.

В Германии сумели имплантировать гены кругопряда в геномы картофеля и табака, и выход спидроина составил до 2% всей белковой массы этих растений.

В Японском университете Шинсу вставили спидроиновый ген в геном тутового шелкопряда Bombyx mori, теперь их гусеницы производят волокно, на 10 % состоящее из белков паутины.

Канадская биотехнологическая фирма Nexia сообщила об успешном внедрении гена спидроина сначала хомячкам, а потом — козам, в результате белки можно выделять из их молока, хотя и в очень небольших количествах. Но чаще всего, в т.ч. в российских биотехнологических лабораториях, для этих целей используют дрожжи — Pichia pastoris, окисляющие метан, и пивные — Saccharomices cerevisiae.

В России признанный лидер по производству искусственных спидроинов — Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов (ГосНИИгенетика). С 2001 г. научная группа под руководством академика Российской академии сельскохозяйственных наук, члена-корреспондента РАН профессора В.Г.Дебабова отрабатывает методы производства рекомбинантных спидроинов.

Из известной нуклеотидной последовательности к-ДНК паука-кругопряда Nephila clavipes биотехнологи выбрали несколько типичных участков, синтезировали соответствующие гены и встроили в геном дрожжей. Раствор, приготовленный из выделенного белка, «прядут», выпуская через тончайшее отверстие в концентрированный этиловый спирт, где он превращается в волокно.

Их коллега из Института биоорганической химии РАН Д.В.Клинов разработал способ получения из раствора пленок разной толщины путем электро-распыления. Регулируя содержание белка в исходном растворе и концентрацию спирта, и изменяя ход последующей обработки, которая включает вытягивание в спирте, размачивание в воде и горячую сушку, исследователи пытаются подобрать условия для создания наиболее прочного и эластичного волокна.

Работа с искусственной паутиной имеет не только прикладной, но и фундаментальный научный смысл.

« Эта проблема находится на стыке биологии, белковой инженерии и материаловедения, — считает профессор кафедры биоинженерии биофака МГУ К.В. Шайтан. — Понимание того, как аминокислотная последовательность влияет на свойства нановолокна, откроет путь к искусственному созданию нанофибрилл с заданными возможностями».

Специалисты с кафедры биоинженерии биологического факультета МГУ совместно с коллегами из ГосНИИгенетики и Института трансплантологии и искусственных органов Минздравсоцразвития РФ изучают свойства нити на разных этапах ее обработки, чтобы разгадать загадки ее вторичной, третичной и четвертичной структуры (Bougush et al., 2008).

Рассматривая поверхность и разломы свежей искусственной нити, еще не подвергнутой обработке, — своего рода аналога зрелого прядильного раствора в паутинной железе — под электронным сканирующим микроскопом они обнаружили, что нить на самом деле представляет собой полую трубку из губчатого материала, испещренного множеством сферических отверстий диаметром 0.15-1 мкм, а в толще твердого материала встречаются такой же величины белковые глобулы. Более мелкие глобулы размером 50-250 нм встречаются на поверхности нитей при некоторых вариантах обработки.

Ученые обратили внимание на то, что образования такой же формы и размера встречаются и в прядильном растворе пауков — может быть, это и есть те самые мицеллы , на которых строится гипотеза американцев? Но ведь фрагменты спидроинов, синтезируемые в ГосНИИгенетике, лишены специфических концевых фрагментов, характерных для природных спидроинов! Значит, способ упаковки молекул в мицеллы другой, чем предполагался в существующих гипотезах.

Если нить из рекомбинантного спидроина, прежде чем вынуть из спирта, растянуть — это рассматривается как аналогия прядения пауком естественной паутины — то структура ее изменится: появляются тонкие фибриллы диаметром 200-900 нм, их можно увидеть с помощью атомно-силового микроскопа. В природной паутине тоже есть микрофибриллы , правда, они в десять раз тоньше.

При более пристальном рассмотрении, тонкие фибриллы оказались больше похожими на бусы: в них чередуются утолщения и более тонкие участки. Под трансмиссионным электронным микроскопом, позволяющим рассмотреть объект на просвет и при большем увеличении, внутри микрофибрилл обнаружены включения диаметром 10-15 нм, которые группируются в продольные структуры длиной до 250 нм. Есть основания полагать, что это кластеры из тех самых нанофибрилл , которые обеспечивают уникальные механические свойства натуральной паутины.

Е. Краснова, кандидат биологических наук

Прочные материалы имеют широкий спектр использования. Есть не только самый твёрдый металл, но и самая твердая и прочная древесина, а так же самые прочные искусственно созданные материалы.

Где используют самые прочные материалы?

Сверхпрочные материалы применяют во многих сферах жизни. Так, химики Ирландии и Америки разработали технологию, посредством которой производится прочное текстильное волокно. Нить этого материала в диаметре – пятьдесят микрометров. Она создана из десятков миллионов нанотрубок, которые с помощью полимера скреплены между собой.

Прочность этого электропроводящего волокна на разрыв выше прочности паутины паука-кругопряда в три раза. Полученный материал используется для изготовления сверхлегких бронежилетов и спортивного инвентаря. Название еще одного прочного материала – ONNEX, созданного по заказу Министерства обороны США. Кроме применения его при производстве бронежилетов, новый материал можно так же использовать в системах летного контроля, сенсорах, двигателях.


Существует разработанная учеными технология, благодаря которой прочные, твердые, прозрачные и легкие материалы получают посредством преобразования аэрогелей. На их основе можно производить облегченные бронежилеты, броню для танков и прочные строительные материалы.

Новосибирские ученые изобрели плазменный реактор нового принципа, благодаря которому можно производить нанотубулен – сверхпрочный искусственный материал. Этот материал открыли еще двадцать лет назад. Он представляет собой массу эластичной консистенции. Она состоит из сплетений, которые невозможно увидеть невооруженным глазом. Толщина стенок данных сплетений – один атом.


То что атомы как бы вложены друг в друга по принципу «русской матрешки», делает нанотубулен наиболее прочным материалом из всех известных. При добавлении этого материала в бетон, металл, пластик, значительно усиливаются их прочность и электропроводность. Нанотубулен поможет сделать машины и самолеты более прочными. Если же новый материал придет в широкое производство, то очень прочными могут стать дороги, дома, техника. Разрушить их будет очень сложно. Нанотубулен до сих пор не был внедрен в широкое производство из-за очень высокой себестоимости. Однако новосибирским ученым удалось значительно снизить себестоимость этого материала. Теперь нанотубулен можно производить не килограммами, а тоннами.


Самый твердый металл

Среди всех известных металлов самым твердым является хром, однако его твердость во многом зависит от чистоты. Его свойства – коррозионностойкость, жаропрочность и тугоплавкость. Хром – металл беловато-голубого оттенка. Его твердость по Бринеллю равна 70-90 кгc/см2. Температура плавления самого твердого металла – тысяча девятьсот семь градусов по Цельсию при плотности семь тысяч двести кг/м3. Этот металл находится в земной коре в размере 0,02 процента, что немало. Обычно он встречается в виде хромистого железняка. Хром добывают из силикатных горных пород.


Этот металл используют в промышленности, выплавляя хромистую сталь, нихром и так далее. Его применяют для антикоррозийных и декоративных покрытий. Хромом очень богаты падающие на Землю каменные метеориты.

Самое прочное дерево

Есть древесина, которая превосходит по прочности чугун и может сравниться с прочностью железа. Речь идет о «Березе Шмидта». Ее так же называют Железной березой. Человек не знает более прочного дерева, чем это. Открыл ее русский ученый-ботаник по фамилии Шмидт, находясь на Дальнем Востоке.


Древесина превышает по прочности чугун в полтора раза, прочность на изгиб примерно равна прочности железа. Из-за таких свойств, железная береза вполне могла бы иногда заменять металл, ведь эта древесина не подвержена коррозии и гниению. Корпус судна, сделанный из Железной березы можно даже не красить, судно не разрушит коррозия, действие кислот ему тоже не страшно.


Березу Шмидта невозможно пробить пулей, топором ее не срубишь. Из всех берез нашей планеты долгожителем является именно Железная береза – она живет четыреста лет. Ее место произрастания – заповедник Кедровая Падь. Это редкий охраняемый вид, который занесен в Красную Книгу. Если бы не такая редкость, сверхпрочную древесину этого дерева можно было бы повсеместно использовать.

А вот самые высокие деревья в мире секвойи не являются очень прочным материалом..

Самый прочный материал во Вселенной

Наиболее прочным и одновременно легким материалом нашей Вселенной является графен. Это углеродная пластина, толщина которой всего один атом, но она прочнее алмаза, а электропроводность в сто раз выше кремния компьютерных чипов.


В скором времени графен покинет научные лаборатории. Все ученые мира говорят сегодня о его уникальных свойствах. Так, несколько грамм материала будет достаточно для покрытия целого футбольного поля. Графен очень гибкий, его можно складывать, изгибать, сворачивать рулоном.

Возможные сферы его использования – солнечные батареи, сотовые телефоны, сенсорные экраны, супербыстрые компьютерные чипы.
Подпишитесь на наш канал в Яндекс.Дзен

Новое на сайте

>

Самое популярное